Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941465

RESUMO

Understanding the resources bees use is essential because we depend greatly on their ecosystem services, and this information could help guide conservation efforts. One way to identify the flowers that bees visit is to collect pollen directly from the bee and then identify the pollen with plant taxa. However, the current method for processing such pollen samples, acetolysis, is designed for samples such as those collected across individuals (e.g., pollen trap), bee nests, or, at the very least, from pollen pellets collected from live bees or from the exhaustive removal of pollen from lethally collected individuals. Smaller samples, including those down to just a few pollen grains sampled from live bees, could facilitate additional opportunities for bee-pollen research, if they can be processed effectively. We present a revised acetolysis methodology designed specifically for processing small pollen samples, so that they can then be used for more accurate identification. Using pollen samples from cotton swabs directly applied to live bees in the field, we demonstrate the effectiveness of our methodology for processing small pollen samples, including samples too small to be visually detected. This methodology can permit nonlethal collections in the field from a greater number of bee species.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Flores , Gossypium , Pólen
2.
Curr Opin Insect Sci ; 45: 69-74, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33601061

RESUMO

Insect conservation will rely on incorporating behavior into management. Dispersal behavior is one such vital behavior for conservation, but it is generally poorly understood at the species level. We reviewed recent literature to identify intricacies that complicate including dispersal behavior in conservation management. Many previous theories used to predict the need to disperse do not explicitly address successful dispersal. Additionally, we found identifying barriers to dispersal as a possible way to improve conservation management, but it is necessary to consider multiple parts of dispersal (emigration, matrix navigation, immigration). Species' dispersal is context-specific. Therefore, to effectively incorporate dispersal behavior into conservation, more research is necessary on individual species' responses to their environment, how they navigate to optimal sites, and their fitness after dispersal events.


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais , Insetos/fisiologia , Animais , Ecologia , Modelos Biológicos
3.
J Therm Biol ; 90: 102596, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32479391

RESUMO

Abiotic factors' effects on species are now well-studied, yet they are still often difficult to predict, especially for strongly interacting species. If these altered abiotic factors and species interactions occur as discrete events in time, such complications may occur because of the events' relative timing. One such discrete abiotic factor is the short-duration, large magnitude increase in temperature called a heat shock. This study investigates how the timing of heat shocks affects the successful attack and reproduction of a parasitoid wasp (Aphidius ervi) attacking its host, the pea aphid (Acyrthosiphon pisum). We tested three relative timings: 1) heat shock before the wasp attacks hosts, 2) heat shock while the wasp is foraging, and 3) heat shock after the wasp has attacked hosts. In each scenario we compared wasp mummy production (pupal stage) with and without a heat shock. Our results showed that a heat shock had the largest effect when it occurred while wasps actively foraged, with fewer mummies produced when exposed to a heat shock compared to the no heat shock control. Follow-up behavioral tests suggest this was caused by wasps becoming inactive during heat shocks. In contrast, when heat shocks were applied three days before or after foraging, we found no difference in mummy production between the heat shock treatment and no heat shock control. These results show the potential importance of timing when considering the ramifications of an altered abiotic factor, especially with relatively discrete abiotic events and interactions.


Assuntos
Afídeos/fisiologia , Afídeos/parasitologia , Resposta ao Choque Térmico/fisiologia , Interações Hospedeiro-Parasita , Vespas/fisiologia , Animais , Comportamento Animal , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...